The sine-Gordon equation Bäcklund transform
suppose u solution of sine-gordon equation
u
x
y
=
sin
u
.
{\displaystyle u_{xy}=\sin u.\,}
then system
v
x
=
u
x
+
2
a
sin
(
u
+
v
2
)
v
y
=
−
u
y
+
2
a
sin
(
v
−
u
2
)
{\displaystyle {\begin{aligned}v_{x}&=u_{x}+2a\sin {\bigl (}{\frac {u+v}{2}}{\bigr )}\\v_{y}&=-u_{y}+{\frac {2}{a}}\sin {\bigl (}{\frac {v-u}{2}}{\bigr )}\end{aligned}}\,\!}
where arbitrary parameter, solvable function v satisfy sine-gordon equation. example of auto-bäcklund transform.
by using matrix system, possible find linear bäcklund transform solutions of sine-gordon equation.
Comments
Post a Comment