The Liouville equation Bäcklund transform
a bäcklund transform can turn non-linear partial differential equation simpler, linear, partial differential equation.
for example, if u , v related via bäcklund transform
v
x
=
u
x
+
2
a
exp
(
u
+
v
2
)
v
y
=
−
u
y
−
1
a
exp
(
u
−
v
2
)
{\displaystyle {\begin{aligned}v_{x}&=u_{x}+2a\exp {\bigl (}{\frac {u+v}{2}}{\bigr )}\\v_{y}&=-u_{y}-{\frac {1}{a}}\exp {\bigl (}{\frac {u-v}{2}}{\bigr )}\end{aligned}}\,\!}
where arbitrary parameter, , if u solution of liouville equation
u
x
y
=
exp
u
{\displaystyle u_{xy}=\exp u\,\!}
then v solution of simpler equation,
v
x
y
=
0
{\displaystyle v_{xy}=0}
, , vice versa.
we can solve (non-linear) liouville equation working simpler linear equation.
Comments
Post a Comment