Operators Computation tree logic




1 operators

1.1 logical operators
1.2 temporal operators
1.3 minimal set of operators





operators
logical operators

the logical operators usual ones:



¬
,

,

,



{\displaystyle \neg ,\lor ,\land ,\rightarrow }

,






{\displaystyle \leftrightarrow }

. along these operators ctl formulas can make use of boolean constants true , false.


temporal operators

the temporal operators following:



quantifiers on paths

a



ϕ


{\displaystyle \phi }

 – all:



ϕ


{\displaystyle \phi }

has hold on paths starting current state.
e



ϕ


{\displaystyle \phi }

 – exists: there exists @ least 1 path starting current state



ϕ


{\displaystyle \phi }

holds.


path-specific quantifiers

x



ϕ


{\displaystyle \phi }

 – next:



ϕ


{\displaystyle \phi }

has hold @ next state (this operator noted n instead of x).
g



ϕ


{\displaystyle \phi }

 – globally:



ϕ


{\displaystyle \phi }

has hold on entire subsequent path.
f



ϕ


{\displaystyle \phi }

 – finally:



ϕ


{\displaystyle \phi }

has hold (somewhere on subsequent path).




ϕ


{\displaystyle \phi }

u



ψ


{\displaystyle \psi }

 – until:



ϕ


{\displaystyle \phi }

has hold @ least until @ position



ψ


{\displaystyle \psi }

holds. implies



ψ


{\displaystyle \psi }

verified in future.




ϕ


{\displaystyle \phi }

w



ψ


{\displaystyle \psi }

 – weak until:



ϕ


{\displaystyle \phi }

has hold until



ψ


{\displaystyle \psi }

holds. difference u there no guarantee



ψ


{\displaystyle \psi }

ever verified. w operator called unless .



in ctl*, temporal operators can freely mixed. in ctl, operator must grouped in two: 1 path operator followed state operator. see examples below. ctl* strictly more expressive ctl.


minimal set of operators

in ctl there minimal set of operators. ctl formulas can transformed use operators. useful in model checking. 1 minimal set of operators is: {true,




,
¬


{\displaystyle \lor ,\neg }

, eg, eu, ex}.


some of transformation used temporal operator are:



ef



ϕ


{\displaystyle \phi }

== e[trueu(



ϕ


{\displaystyle \phi }

)] ( because f



ϕ


{\displaystyle \phi }

== [trueu(



ϕ


{\displaystyle \phi }

)] )
ax



ϕ


{\displaystyle \phi }

==



¬


{\displaystyle \neg }

ex(



¬


{\displaystyle \neg }





ϕ


{\displaystyle \phi }

)
ag



ϕ


{\displaystyle \phi }

==



¬


{\displaystyle \neg }

ef(



¬


{\displaystyle \neg }





ϕ


{\displaystyle \phi }

) ==



¬


{\displaystyle \neg }

e[trueu(



¬


{\displaystyle \neg }





ϕ


{\displaystyle \phi }

)]
af



ϕ


{\displaystyle \phi }

== a[trueu



ϕ


{\displaystyle \phi }

] ==



¬


{\displaystyle \neg }

eg(



¬


{\displaystyle \neg }





ϕ


{\displaystyle \phi }

)
a[



ϕ


{\displaystyle \phi }

u



ψ


{\displaystyle \psi }

] ==



¬


{\displaystyle \neg }

( e[(



¬


{\displaystyle \neg }





ψ


{\displaystyle \psi }

)u



¬


{\displaystyle \neg }

(



ϕ


{\displaystyle \phi }








{\displaystyle \lor }





ψ


{\displaystyle \psi }

)]






{\displaystyle \lor }

eg(



¬


{\displaystyle \neg }





ψ


{\displaystyle \psi }

) )






Comments

Popular posts from this blog

Types Raffinate

Biography Michał Vituška

Caf.C3.A9 Types of restaurant