Examples Involute




1 examples

1.1 involute of circle

1.1.1 curve length


1.2 involute of catenary

1.2.1 derivative


1.3 involute of cycloid





examples
involute of circle

the involute of circle (black) not identical archimedean spiral (red) in trivial manner.


the involute of circle resembles, not, archimedean spiral.


its successive turns parallel curves constant separation distance, property (inaccurately) ascribed archimedean spiral.



in cartesian coordinates x , y, involute of circle has parametric equation












x



=
r

(
cos

θ
+
θ
sin

θ
)





y



=
r

(
sin

θ

θ
cos

θ
)







{\displaystyle {\begin{aligned}x&=r\left(\cos \theta +\theta \sin \theta \right)\\y&=r\left(\sin \theta -\theta \cos \theta \right)\end{aligned}}}






where r radius of circle, , θ angle in radians (θ ∈ ℝ). counterclockwise spiral made positive values of θ, , clockwise spiral made negative values of θ.


in polar coordinates r , φ, involute of circle has parametric equation












r



=
a
sec

α
=


a

cos

α







φ



=
tan

α

α






{\displaystyle {\begin{aligned}r&=a\sec \alpha ={\frac {a}{\cos \alpha }}\\\varphi &=\tan \alpha -\alpha \end{aligned}}}






where radius of circle , α angle parameter in radians (α ∈ ℝ) equal t − φ (so tan α = t).


with parameter t (with t = tan α; t ∈ ℝ) can written in form









r



=
a


1
+
 

t

2








φ



=
t

arctan

(
t
)
.






{\displaystyle {\begin{aligned}r&=a{\sqrt {1+\ t^{2}}}\\\varphi &=t-\arctan(t).\end{aligned}}}






from cartesian coordinates , first polar coordinates, can seen that





r
(
θ
)
=
a


1
+

θ

2






{\displaystyle r(\theta )=a{\sqrt {1+\theta ^{2}}}}




so





θ
=
t
.


{\displaystyle \theta =t.}





curve length

the arc length of above curve 0 ≤ t ≤ t1 is







l
=


a
2





t

1




2




{\displaystyle l={\frac {a}{2}}{t_{1}}^{2}}



involute of catenary

the involute of catenary, tractrix.


the involute of catenary through vertex tractrix. in cartesian coordinates curve follows











x



=
t

tanh

(
t
)




y



=
sech

(
t
)
=


1

cosh

(
t
)









{\displaystyle {\begin{aligned}x&=t-\tanh(t)\\y&=\operatorname {sech} (t)={\frac {1}{\cosh(t)}}\end{aligned}}}



where t parameter , sech hyperbolic secant (1/cosh(t)).


derivative

with







r
(
s
)
=


(



sinh


1



(
s
)
,
cosh


(

sinh


1



(
s
)
)



)




{\displaystyle r(s)={\big (}\sinh ^{-1}(s),\cosh \left(\sinh ^{-1}(s)\right){\big )}}



we have








r


(
s
)
=



(
1
,
s
)


1
+

s

2







{\displaystyle r (s)={\frac {(1,s)}{\sqrt {1+s^{2}}}}}



and







r
(
t
)

t

r




(
t
)
=

(

sinh


1



(
t
)



t

1
+

t

2





,


1

1
+

t

2





)

.


{\displaystyle r(t)-tr^{\prime }(t)=\left(\sinh ^{-1}(t)-{\frac {t}{\sqrt {1+t^{2}}}},{\frac {1}{\sqrt {1+t^{2}}}}\right).}



substitute







t
=



1


y

2



y




{\displaystyle t={\frac {\sqrt {1-y^{2}}}{y}}}



to get








(

sech


1



(
y
)



1


y

2




,
y
)

.


{\displaystyle \left(\operatorname {sech} ^{-1}(y)-{\sqrt {1-y^{2}}},y\right).}



involute of cycloid

one involute of cycloid congruent cycloid. in cartesian coordinates curve follows











x



=
r


(


t

sin

(
t
)


)






y



=
r


(


1

cos

(
t
)


)








{\displaystyle {\begin{aligned}x&=r{\bigl (}t-\sin(t){\bigr )}\\y&=r{\bigl (}1-\cos(t){\bigr )}\end{aligned}}}



where t angle , r radius.







Comments

Popular posts from this blog

Types Raffinate

Biography Michał Vituška

Caf.C3.A9 Types of restaurant