Involute of a catenary Involute
the involute of catenary, tractrix.
the involute of catenary through vertex tractrix. in cartesian coordinates curve follows
x
=
t
−
tanh
(
t
)
y
=
sech
(
t
)
=
1
cosh
(
t
)
{\displaystyle {\begin{aligned}x&=t-\tanh(t)\\y&=\operatorname {sech} (t)={\frac {1}{\cosh(t)}}\end{aligned}}}
where t parameter , sech hyperbolic secant (1/cosh(t)).
derivative
with
r
(
s
)
=
(
sinh
−
1
(
s
)
,
cosh
(
sinh
−
1
(
s
)
)
)
{\displaystyle r(s)={\big (}\sinh ^{-1}(s),\cosh \left(\sinh ^{-1}(s)\right){\big )}}
we have
r
′
(
s
)
=
(
1
,
s
)
1
+
s
2
{\displaystyle r (s)={\frac {(1,s)}{\sqrt {1+s^{2}}}}}
and
r
(
t
)
−
t
r
′
(
t
)
=
(
sinh
−
1
(
t
)
−
t
1
+
t
2
,
1
1
+
t
2
)
.
{\displaystyle r(t)-tr^{\prime }(t)=\left(\sinh ^{-1}(t)-{\frac {t}{\sqrt {1+t^{2}}}},{\frac {1}{\sqrt {1+t^{2}}}}\right).}
substitute
t
=
1
−
y
2
y
{\displaystyle t={\frac {\sqrt {1-y^{2}}}{y}}}
to get
(
sech
−
1
(
y
)
−
1
−
y
2
,
y
)
.
{\displaystyle \left(\operatorname {sech} ^{-1}(y)-{\sqrt {1-y^{2}}},y\right).}
Comments
Post a Comment