Involute of a catenary Involute



the involute of catenary, tractrix.


the involute of catenary through vertex tractrix. in cartesian coordinates curve follows











x



=
t

tanh

(
t
)




y



=
sech

(
t
)
=


1

cosh

(
t
)









{\displaystyle {\begin{aligned}x&=t-\tanh(t)\\y&=\operatorname {sech} (t)={\frac {1}{\cosh(t)}}\end{aligned}}}



where t parameter , sech hyperbolic secant (1/cosh(t)).


derivative

with







r
(
s
)
=


(



sinh


1



(
s
)
,
cosh


(

sinh


1



(
s
)
)



)




{\displaystyle r(s)={\big (}\sinh ^{-1}(s),\cosh \left(\sinh ^{-1}(s)\right){\big )}}



we have








r


(
s
)
=



(
1
,
s
)


1
+

s

2







{\displaystyle r (s)={\frac {(1,s)}{\sqrt {1+s^{2}}}}}



and







r
(
t
)

t

r




(
t
)
=

(

sinh


1



(
t
)



t

1
+

t

2





,


1

1
+

t

2





)

.


{\displaystyle r(t)-tr^{\prime }(t)=\left(\sinh ^{-1}(t)-{\frac {t}{\sqrt {1+t^{2}}}},{\frac {1}{\sqrt {1+t^{2}}}}\right).}



substitute







t
=



1


y

2



y




{\displaystyle t={\frac {\sqrt {1-y^{2}}}{y}}}



to get








(

sech


1



(
y
)



1


y

2




,
y
)

.


{\displaystyle \left(\operatorname {sech} ^{-1}(y)-{\sqrt {1-y^{2}}},y\right).}








Comments

Popular posts from this blog

Types Raffinate

Biography Michał Vituška

Caf.C3.A9 Types of restaurant