Statement Hensel's lemma




1 statement

1.1 general statement
1.2 alternative statement
1.3 derivation





statement

many equivalent statements of hensel s lemma exist. arguably common statement following.


general statement

assume



k


{\displaystyle k}

field complete respect normalised discrete valuation



v


{\displaystyle v}

. suppose, furthermore,






o



k




{\displaystyle {\mathcal {o}}_{k}}

ring of integers of



k


{\displaystyle k}

(i.e. elements of



k


{\displaystyle k}

non-negative valuation), let



π

k


{\displaystyle \pi \in k}

such



v
(
π
)
=
1


{\displaystyle v(\pi )=1}

, let



k
=



o



k



/

π


{\displaystyle k={\mathcal {o}}_{k}/\pi }

denote residue field. let



f
(
x
)




o



k


[
x
]


{\displaystyle f(x)\in {\mathcal {o}}_{k}[x]}

polynomial coefficients in






o



k




{\displaystyle {\mathcal {o}}_{k}}

. if reduction





f
¯


(
x
)

k
[
x
]


{\displaystyle {\overline {f}}(x)\in k[x]}

has simple root (i.e. there exists




k

0



k


{\displaystyle k_{0}\in k}

such





f
¯


(

k

0


)
=
0


{\displaystyle {\overline {f}}(k_{0})=0}

,






f


¯


(

k

0


)

0


{\displaystyle {\overline {f }}(k_{0})\neq 0}

), there exists unique



a




o



k




{\displaystyle a\in {\mathcal {o}}_{k}}

such



f
(
a
)
=
0


{\displaystyle f(a)=0}

, reduction





a
¯


=

k

0




{\displaystyle {\overline {a}}=k_{0}}

in



k


{\displaystyle k}

.


alternative statement

another way of stating (in less generality) is: let



f
(
x
)


{\displaystyle f(x)}

polynomial integer (or p-adic integer) coefficients, , let m,k positive integers such m ≤ k. if r integer such that







f
(
r
)

0


(
mod


p

k


)



{\displaystyle f(r)\equiv 0{\pmod {p^{k}}}}

,




f


(
r
)

0


(
mod

p
)



{\displaystyle f (r)\not \equiv 0{\pmod {p}}}



then there exists integer s such that







f
(
s
)

0


(
mod


p

k
+
m


)



{\displaystyle f(s)\equiv 0{\pmod {p^{k+m}}}}

,



r

s


(
mod


p

k


)

.


{\displaystyle r\equiv s{\pmod {p^{k}}}.}



furthermore, s unique modulo p, , can computed explicitly integer such that







s
=
r

f
(
r
)

a


{\displaystyle s=r-f(r)\cdot a}





a


{\displaystyle a}

integer satisfying



a

[

f


(
r
)

]


1




(
mod


p

m


)

.


{\displaystyle a\equiv [f (r)]^{-1}{\pmod {p^{m}}}.}



note



f
(
r
)

0


(
mod


p

k


)



{\displaystyle f(r)\equiv 0{\pmod {p^{k}}}}

condition



s

r


(
mod


p

k


)



{\displaystyle s\equiv r{\pmod {p^{k}}}}

met. aside, if




f


(
r
)

0


(
mod

p
)



{\displaystyle f (r)\equiv 0{\pmod {p}}}

, 0, 1, or several s may exist (see hensel lifting below).


derivation

the lemma derives considering taylor expansion of f around r.



r

s


(
mod


p

k


)



{\displaystyle r\equiv s{\pmod {p^{k}}}}

, see s has of form s = r + tp integer t.


let



f
(
r
+
t

p

k


)
=



n
=
0


n



c

n


 


(
t

p

k


)


n




{\displaystyle f(r+tp^{k})=\sum _{n=0}^{n}c_{n}\ \left(tp^{k}\right)^{n}}

,




c

0


=
f
(
r
)
,


c

1


=

f


(
r
)


{\displaystyle c_{0}=f(r),\,c_{1}=f (r)}

, hence







f
(
r
+
t

p

k


)
=
f
(
r
)
+
t


p

k




f


(
r
)
+

p

2
k




t

2



g
(
t
)


{\displaystyle f(r+tp^{k})=f(r)+t\,p^{k}\,f (r)+p^{2k}\,t^{2}\,g(t)}

polynomial



g
(
t
)


{\displaystyle g(t)}

integer coefficients.

reducing both sides modulo




p

k
+
m


,
m

k


{\displaystyle p^{k+m},m\leq k}

, see



f
(
s
)

0


(
mod


p

k
+
m


)



{\displaystyle f(s)\equiv 0{\pmod {p^{k+m}}}}

hold, need







0

f
(
r
+
t

p

k


)

f
(
r
)
+
t


p

k




f


(
r
)


(
mod


p

k
+
m


)



{\displaystyle 0\equiv f(r+tp^{k})\equiv f(r)+t\,p^{k}\,f (r){\pmod {p^{k+m}}}}



then note



f
(
r
)
=
z

p

k




{\displaystyle f(r)=zp^{k}}

integer



z


{\displaystyle z}

since



r


{\displaystyle r}

root of



f
(
x
)

0


(
mod


p

k


)



{\displaystyle f(x)\equiv 0{\pmod {p^{k}}}}

. thus,







0

(
z
+
t

f


(
r
)
)

p

k




(
mod


p

k
+
m


)



{\displaystyle 0\equiv (z+tf (r))p^{k}{\pmod {p^{k+m}}}}

,

which say







0

z
+
t

f


(
r
)


(
mod


p

m


)

.


{\displaystyle 0\equiv z+tf (r){\pmod {p^{m}}}.}



solving



t


{\displaystyle t}

in




z


/


p

m



z



{\displaystyle \mathbb {z} /p^{m}\mathbb {z} }

gives explicit formula s mentioned above. assumption




f


(
r
)


{\displaystyle f (r)}

not divisible p ensures




f


(
r
)


{\displaystyle f (r)}

has inverse mod




p

m




{\displaystyle p^{m}}

unique. hence solution t exists uniquely modulo




p

m




{\displaystyle p^{m}}

, , s exists uniquely modulo




p

k
+
m




{\displaystyle p^{k+m}}

.








Comments

Popular posts from this blog

Types Raffinate

Biography Michał Vituška

Caf.C3.A9 Types of restaurant