Semantics of CTL Computation tree logic
1 semantics of ctl
1.1 definition
1.2 characterisation of ctl
1.3 semantic equivalences
semantics of ctl
definition
ctl formulae interpreted on transition systems. transition system triple
m
=
(
s
,
→
,
l
)
{\displaystyle {\mathcal {m}}=(s,\rightarrow ,l)}
,
s
{\displaystyle s}
set of states,
→⊆
s
×
s
{\displaystyle \rightarrow \subseteq s\times s}
transition relation, assumed serial, i.e. every state has @ least 1 successor, ,
l
{\displaystyle l}
labelling function, assigning propositional letters states. let
m
=
(
s
,
→
,
l
)
{\displaystyle {\mathcal {m}}=(s,\rightarrow ,l)}
such transition model
with
s
∈
s
,
ϕ
∈
f
{\displaystyle s\in s,\phi \in f}
f set of wffs on language of
m
{\displaystyle {\mathcal {m}}}
.
then relation of semantic entailment
(
m
,
s
⊨
ϕ
)
{\displaystyle ({\mathcal {m}},s\models \phi )}
defined structural induction on
ϕ
{\displaystyle \phi }
:
characterisation of ctl
rules 10–15 above refer computation paths in models , characterise computation tree ; assertions nature of infinitely deep computation tree rooted @ given state
s
{\displaystyle s}
.
semantic equivalences
the formulae
ϕ
{\displaystyle \phi }
,
ψ
{\displaystyle \psi }
said semantically equivalent if state in model satisfies 1 satisfies other. denoted
ϕ
≡
ψ
{\displaystyle \phi \equiv \psi }
it can seen , e duals, being universal , existential computation path quantifiers respectively:
¬
a
ϕ
≡
e
¬
ϕ
{\displaystyle \neg a\phi \equiv e\neg \phi }
.
furthermore, g , f.
hence instance of de morgan s laws can formulated in ctl:
¬
a
f
ϕ
≡
e
g
¬
ϕ
{\displaystyle \neg af\phi \equiv eg\neg \phi }
¬
e
f
ϕ
≡
a
g
¬
ϕ
{\displaystyle \neg ef\phi \equiv ag\neg \phi }
¬
a
x
ϕ
≡
e
x
¬
ϕ
{\displaystyle \neg ax\phi \equiv ex\neg \phi }
it can shown using such identities subset of ctl temporal connectives adequate if contains
e
u
{\displaystyle eu}
, @ least 1 of
{
a
x
,
e
x
}
{\displaystyle \{ax,ex\}}
, @ least 1 of
{
e
g
,
a
f
,
a
u
}
{\displaystyle \{eg,af,au\}}
, boolean connectives.
the important equivalences below called expansion laws; allow unfold verification of ctl connective towards successors in time.
a
g
ϕ
≡
ϕ
∧
a
x
a
g
ϕ
{\displaystyle ag\phi \equiv \phi \land axag\phi }
e
g
ϕ
≡
ϕ
∧
e
x
e
g
ϕ
{\displaystyle eg\phi \equiv \phi \land exeg\phi }
a
f
ϕ
≡
ϕ
∨
a
x
a
f
ϕ
{\displaystyle af\phi \equiv \phi \lor axaf\phi }
e
f
ϕ
≡
ϕ
∨
e
x
e
f
ϕ
{\displaystyle ef\phi \equiv \phi \lor exef\phi }
a
[
ϕ
u
ψ
]
≡
ψ
∨
(
ϕ
∧
a
x
a
[
ϕ
u
ψ
]
)
{\displaystyle a[\phi u\psi ]\equiv \psi \lor (\phi \land axa[\phi u\psi ])}
e
[
ϕ
u
ψ
]
≡
ψ
∨
(
ϕ
∧
e
x
e
[
ϕ
u
ψ
]
)
{\displaystyle e[\phi u\psi ]\equiv \psi \lor (\phi \land exe[\phi u\psi ])}
Comments
Post a Comment